20n^2+11=891

Simple and best practice solution for 20n^2+11=891 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 20n^2+11=891 equation:



20n^2+11=891
We move all terms to the left:
20n^2+11-(891)=0
We add all the numbers together, and all the variables
20n^2-880=0
a = 20; b = 0; c = -880;
Δ = b2-4ac
Δ = 02-4·20·(-880)
Δ = 70400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{70400}=\sqrt{6400*11}=\sqrt{6400}*\sqrt{11}=80\sqrt{11}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80\sqrt{11}}{2*20}=\frac{0-80\sqrt{11}}{40} =-\frac{80\sqrt{11}}{40} =-2\sqrt{11} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80\sqrt{11}}{2*20}=\frac{0+80\sqrt{11}}{40} =\frac{80\sqrt{11}}{40} =2\sqrt{11} $

See similar equations:

| 1120=640(1+(.15)(t) | | 5x-4=3x+8-x | | (h-8.7)/9.3=-7.6 | | b^2-7=-12 | | -9+4x=2x+17 | | 5x+2+4x=2 | | 5.2s=10.2 | | f/0.08=7 | | -3(4x+3)+4=(6x+7)=43 | | -6x-11=-3x+10 | | b^2-3=13 | | 15/z+1/4=4 | | 2^(x)*5^(2x-3)=1/2^(x-3) | | -10+4x=-17-3x | | 3x-15=30=6x | | 2^x*5^(2x-3)=1/2^(x-3) | | -17n=-425 | | 3x-15=30=6x | | 2x-3/4x=1/2x+13/3 | | 3/8=r+2/3= | | 4m+40=-5(1-3m)+4m | | 4c-2(c+2)=1-(2c-5) | | -5x-8=-2x-23 | | -x-35=35=6x | | 8+4m-4=7m+6-4m | | -22+x=-2x+11 | | .4x+1.2=-0.8+0.15x | | 3x+34-180=5x | | 3x+34-5x=180 | | 8+13x=12x | | -3(4x+3)+4=(6x+7) | | 4x+12=x= |

Equations solver categories